Neuroscience
One major aim of current neuroscience research, then, is to study how this wiring works and what happens when it's damaged. New developments in brain scanning allow researchers to see more detailed images and determine not only where there may be damage but also how that damage affects, for instance, motor skills and cognitive behavior in conditions like multiple sclerosis and dementia.
neuroscience
A rapidly expanding discipline, neuroscience findings have grown by leaps and bounds over the past half-century. More work, however, will always be needed to fully understand the neural roots of human behavior, consciousness, and memory.
The scope of neuroscience has broadened over time to include different approaches used to study the nervous system at different scales. The techniques used by neuroscientists have expanded enormously, from molecular and cellular studies of individual neurons to imaging of sensory, motor and cognitive tasks in the brain.
During the 20th century, neuroscience began to be recognized as a distinct academic discipline in its own right, rather than as studies of the nervous system within other disciplines. Eric Kandel and collaborators have cited David Rioch, Francis O. Schmitt, and Stephen Kuffler as having played critical roles in establishing the field.[24] Rioch originated the integration of basic anatomical and physiological research with clinical psychiatry at the Walter Reed Army Institute of Research, starting in the 1950s. During the same period, Schmitt established a neuroscience research program within the Biology Department at the Massachusetts Institute of Technology, bringing together biology, chemistry, physics, and mathematics. The first freestanding neuroscience department (then called Psychobiology) was founded in 1964 at the University of California, Irvine by James L. McGaugh.[25] This was followed by the Department of Neurobiology at Harvard Medical School, which was founded in 1966 by Stephen Kuffler.[26]
As a result of the increasing interest about the nervous system, several prominent neuroscience organizations have been formed to provide a forum to all neuroscientists during the 20th century. For example, the International Brain Research Organization was founded in 1961,[27] the International Society for Neurochemistry in 1963,[28] the European Brain and Behaviour Society in 1968,[29] and the Society for Neuroscience in 1969.[30] Recently, the application of neuroscience research results has also given rise to applied disciplines as neuroeconomics,[31] neuroeducation,[32] neuroethics,[33] and neurolaw.[34]
The scientific study of the nervous system increased significantly during the second half of the twentieth century, principally due to advances in molecular biology, electrophysiology, and computational neuroscience. This has allowed neuroscientists to study the nervous system in all its aspects: how it is structured, how it works, how it develops, how it malfunctions, and how it can be changed.
Perhaps one of the main unsolved problems in modern neuroscience is the so-called "cell types" problem which refers to the categorization, definition, and identification of all neuronal/astrocytic cell types in an organism. Usually, this refers to the mouse brain since an understanding of the mouse brain is seen as a stepping stone to understand the human.[38] Modern advances in the classification of neuronal cells have been enabled by electrophysiological recording, single-cell genetic sequencing, and high-quality microscopy, which have been recently combined into a single method pipeline called Patch-seq in which all 3 methods are simultaneously applied using miniature tools.[39] The efficiency of this method and the large amounts of data that is generated allowed researchers to make some general conclusions about cell types; for example that the human and mouse brain have different versions of fundamentally the same cell types.[40]
Basic questions addressed in molecular neuroscience include the mechanisms by which neurons express and respond to molecular signals and how axons form complex connectivity patterns. At this level, tools from molecular biology and genetics are used to understand how neurons develop and how genetic changes affect biological functions.[41] The morphology, molecular identity, and physiological characteristics of neurons and how they relate to different types of behavior are also of considerable interest.
Questions addressed in cellular neuroscience include the mechanisms of how neurons process signals physiologically and electrochemically. These questions include how signals are processed by neurites and somas and how neurotransmitters and electrical signals are used to process information in a neuron. Neurites are thin extensions from a neuronal cell body, consisting of dendrites (specialized to receive synaptic inputs from other neurons) and axons (specialized to conduct nerve impulses called action potentials). Somas are the cell bodies of the neurons and contain the nucleus.
Another major area of cellular neuroscience is the investigation of the development of the nervous system. Questions include the patterning and regionalization of the nervous system, axonal and dendritic development, trophic interactions, synapse formation and the implication of fractones in neural stem cells,[42][43] differentiation of neurons and glia (neurogenesis and gliogenesis), and neuronal migration.[44]
Questions in systems neuroscience include how neural circuits are formed and used anatomically and physiologically to produce functions such as reflexes, multisensory integration, motor coordination, circadian rhythms, emotional responses, learning, and memory. In other words, they address how these neural circuits function in large-scale brain networks, and the mechanisms through which behaviors are generated. For example, systems level analysis addresses questions concerning specific sensory and motor modalities: how does vision work? How do songbirds learn new songs and bats localize with ultrasound? How does the somatosensory system process tactile information? The related fields of neuroethology and neuropsychology address the question of how neural substrates underlie specific animal and human behaviors. Neuroendocrinology and psychoneuroimmunology examine interactions between the nervous system and the endocrine and immune systems, respectively. Despite many advancements, the way that networks of neurons perform complex cognitive processes and behaviors is still poorly understood.
Cognitive neuroscience addresses the questions of how psychological functions are produced by neural circuitry. The emergence of powerful new measurement techniques such as neuroimaging (e.g., fMRI, PET, SPECT), EEG, MEG, electrophysiology, optogenetics and human genetic analysis combined with sophisticated experimental techniques from cognitive psychology allows neuroscientists and psychologists to address abstract questions such as how cognition and emotion are mapped to specific neural substrates. Although many studies still hold a reductionist stance looking for the neurobiological basis of cognitive phenomena, recent research shows that there is an interesting interplay between neuroscientific findings and conceptual research, soliciting and integrating both perspectives. For example, neuroscience research on empathy solicited an interesting interdisciplinary debate involving philosophy, psychology and psychopathology.[45] Moreover, the neuroscientific identification of multiple memory systems related to different brain areas has challenged the idea of memory as a literal reproduction of the past, supporting a view of memory as a generative, constructive and dynamic process.[46]
Neuroscience is also allied with the social and behavioral sciences, as well as with nascent interdisciplinary fields. Examples of such alliances include neuroeconomics, decision theory, social neuroscience, and neuromarketing to address complex questions about interactions of the brain with its environment. A study into consumer responses for example uses EEG to investigate neural correlates associated with narrative transportation into stories about energy efficiency.[47]
Questions in computational neuroscience can span a wide range of levels of traditional analysis, such as development, structure, and cognitive functions of the brain. Research in this field utilizes mathematical models, theoretical analysis, and computer simulation to describe and verify biologically plausible neurons and nervous systems. For example, biological neuron models are mathematical descriptions of spiking neurons which can be used to describe both the behavior of single neurons as well as the dynamics of neural networks. Computational neuroscience is often referred to as theoretical neuroscience.
Nanoparticles in medicine are versatile in treating neurological disorders showing promising results in mediating drug transport across the blood brain barrier.[48] Implementing nanoparticles in antiepileptic drugs enhances their medical efficacy by increasing bioavailability in the bloodstream, as well as offering a measure of control in release time concentration.[48] Although nanoparticles can assist therapeutic drugs by adjusting physical properties to achieve desirable effects, inadvertent increases in toxicity often occur in preliminary drug trials.[49] Furthermore, production of nanomedicine for drug trials is economically consuming, hindering progress in their implementation. Computational models in nanoneuroscience provide alternatives to study the efficacy of nanotechnology-based medicines in neurological disorders while mitigating potential side effects and development costs.[48]
Recently, the boundaries between various specialties have blurred, as they are all influenced by basic research in neuroscience. For example, brain imaging enables objective biological insight into mental illnesses, which can lead to faster diagnosis, more accurate prognosis, and improved monitoring of patient progress over time.[55] 041b061a72